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Friction in strongly confined polymer melts: Effect of polymer bridges
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We propose a molecular theory of friction in confined polymer melts between atomically smooth surfaces,
taking polymer bridges between the surfaces into account. Using the activation friction model, we consider the
bridge adsorption-desorption dynamics and calculate the macroscopic friction force~the tangential stress! in
the system as a function of the imposed velocity. We show that the bridges result in the regime where the
friction force decreases with the increase of the imposed velocity. The friction force passes through maximum
and minimum values in the crossover range between linear and nonlinear regimes. We also investigate the
stability of sliding in the regime with decreasing friction force.@S1063-651X~97!09606-2#

PACS number~s!: 36.20.2r
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I. INTRODUCTION

Rheology of polymer liquids strongly confined in a na
ogap region between two walls is substantially different fro
that of bulk polymer liquids in many respects@1–14#. The
direct measurements of the rheological functions under
cillatory shear demonstrated that the confined liquids exh
a solidlike behavior for a small amplitude of deformation a
liquidlike behavior for a large amplitude@5–7#. In the liquid-
like regime, the friction force behavior is rather complicat
and depends on the thickness of the polymer film: Sh
thinning has been found in the experiments@2,4–7,13,14#.
Sometimes the sliding is evinced in the form of stick-s
motion @1,11–13#.

The measurements of the linear viscoelasticity under
cillatory shear@5,10# indicated that the loss modulus of co
fined polymers has a shape characteristic of entangled p
mers@15# even though the loss modulus of the same polym
in the bulk state does not show any indication of entang
ments. The possible interpretation of this phenomena is
entanglement interactions are enhanced in the confined
@5,10#. However, recent computer simulations@16# demon-
strate that the entanglements cannot be induced or enha
by the restricted geometry. Alternatively, the computer sim
lations@17–21# suggest that the polymer-surface interactio
can be the dominant factor in the rheology of confined s
tems. These interactions include the short-range forces
tween the surfaces and the polymer segments, and l
range dispersion forces@22#. These forces can be responsib
for the suppression of the mobility of the polymer segme
at the surfaces and even result in the formation of an imm
bilized glassy layer at the surfaces. Straightforward incor
ration of the polymer-surface interactions into the model i
very complicated problem.

*Author to whom correspondence should be addressed.
561063-651X/97/56~1!/623~8!/$10.00
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Recently we have proposed a simple model, which
based on the continuum medium approximation. In t
model the polymer-surface interaction is accounted for
two friction coefficients@23,24#: One friction coefficientz1
characterizes the mobility of segments in the adsorbed
face layer of thickness of the order of the segment sizea and
the second friction coefficientz0 is outside this layer. One o
the basic points of this model is the estimation of the deso
tion time of the chain section ofg segmentst(g). Taking
into account that the chain conformation in the melt state
Gaussian@25#, and therefore that the chain section has
orderg1/2 adsorbed segments, the total friction coefficient
the section can be written asz;z0(g2g1/2)1z1g

1/2. The
desorption time is thus the displacement time on a dista
of order ag1/2: t(g);a2gz. Assuming that the polyme
chains bridge the surfaces, the model qualitatively expla
some features of the confined polymer melts. In particu
the transition from the solidlike state to the liquidlike sta
can be attributed to the onset of the bridge breakage pro
and the existence of two relaxational zones is connected
the contributions of the bridges and loops.

In the present paper we propose a theory of friction
strongly confined polymer liquids that is based on a deta
consideration of the adsorption-desorption dynamics.
thus reconsider the estimation for the chain adsorpti
desorption time adopted in the previous work@23#. We also
employ the activation model of friction@26#, which seems to
be more appropriate for the description of nonlinear regim

II. MODEL

We consider the polymer melt confined between two p
allel walls that strongly adsorb polymers. We assume that
polymer chains consist ofN links ~segments! of lengtha and
volumev. The chain contour length isRmax;aN. The thick-
ness of the confined polymer filmh is assumed to be smalle
than or of the same order as the size of the chain c
623 © 1997 The American Physical Society
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624 56A. SUBBOTIN, A. SEMENOV, AND M. DOI
h<aN1/2. The interaction between the polymer and the w
is characterized by some energy of attraction2e ~the energy
of a polymer segment when it is adsorbed on the surfa!.
However, this energye does not affect the equilibrium prop
erties of the polymer melt since the interactions are scree
in the melt and the correlation length is of the order of t
segment sizea @25#.

The attraction between the polymer and wall affects
dynamics: If the polymer is strongly adsorbed on the surfa
the desorption hardly takes place. This effect is not rep
sented by the energye, but by the activation energy. In orde
to specify the dynamics, we employ the activation mo
@26#. We assume that each polymer segment exchange
position with one of its neighbors by some activation p
cess. The activation energyU1 of a polymer segment ad
sorbed on the surface is higher than the activation ene
U0 of a polymer segment in the bulk. Thus the mean ti
that the polymer segment stays at its own position is writ
as @26#

t15t* expS U1

kBT
D , t05t* expS U0

kBT
D , ~1!

wheret* is the characteristic time of molecular oscillatio

t*;a~m/kBT!1/2 ~2!

andm is the mass of a segment.
According to the above activation model, the diffusio

constant of the adsorbed segmenta2/t1 is much smaller than
that of the bulk liquida2/t0 . Alternatively, one can visualize
this in such a way that the polymer segment sitting in
adsorbed layer is surrounded by a very viscous medium
has an effective friction coefficientz1.kBTt1 /a

2 that is
much larger than that in the bulk statez0.kBTt0 /a

2.
The effective friction model implies that if a polymer se

ment adsorbed on the wall is subjected to an external forcf,
it moves with the mean velocityu5f/z1 . This relation, how-
ever, is valid only forf,kBT/a. If the force becomes larger
we have to take into account the activation process unde
ing the motion of the segments. This is done as follows
the segment is subject to a forcef, the activation energy it
has to overcome when it moves in the directionn ~n being a
unit vector! is U12an•f. Thus the relaxation time is give
by @27#

t1~n!5t* expSU12af•n

kBT
D , ~3!

where we assume thata f,U1 . The average segment velo
ity u thus can be found from

u5 K an

t1~n!L 5
a

t1
K n expS af•nkBT

D L , ~4!

where^ & denotes averaging over the directionsn. Here we
can separate two cases.~i! f,(kBT)/a or u,a/t1 , using the
perturbation scheme, we obtain the linear relation betw
the force and the average velocityu, f;z1u, where z1
5(kBT)t1 /a

2. This agrees with the effective friction mode
~ii ! For kBT/a, f,U1 /a or a/t1,u,a/t* , with Eq. ~4!,
we find
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f;
kBT

a
lnS ut1

a D . ~5!

Thus, in the nonlinear case we obtain a logarithmic dep
dence of the friction force over the velocity.

III. EQUILIBRIUM PROPERTIES AND DYNAMICS
OF BRIDGES WITH NO FLOW

The typical conformation of a chain confined between t
walls consists ofbridges, which start at one surface and en
at another surface, andattached sections, which have con-
tacts with only one of the surfaces~Fig. 1!. An attached
section includes series ofloopsand separates two seccesi
bridges. We classify the attached sections according to
number of loops. We consider one of the bridge ends~say,
B, Fig. 1! and follow the chain configuration until we com
to the next contact (C) with one of the surfaces. Most prob
ably this is again a contact with the same surface, so that
fragmentBC forms a loop with high probability 12w. Here
w is the small probability that theBC fragment is bridging
two surfaces. The length of the bridging fragment must be
orderg0.(h/a)2, so thatw can be roughly interpreted as th
probability that a Gaussian polymer fragment, consisting
g0 segments, starts at a surface and does not touch this
face again. Hencew;g0

21/2 @28#. As correlations are
screened out in the melt state, the probability that an attac
section consists ofn loops is

pn5w~12w!n;g0
21/2exp~2n/g0

1/2!. ~6!

The average number of contacts per attached sectionn̄
5(npn;g0

1/2.
Then loops in the attached section between the succe

bridging fragments can be also considered anattached blob
with g links. Gaussian statistics implies that

n.g1/2. ~7!

The surface concentration of the bridges and attached
tions is @23#

n0.h/vg0.a2/vh; ~8!

therefore the surface concentration of attached sections,
sisting ofg segments, is

n~g!;n0npn;~a/v !~a/h!2g1/2exp@2~g/g0!
1/2#. ~9!

FIG. 1. Typical chain conformation with adsorbed segmen
Filled circles imply adsorbed segments and empty circles imply f
segments.AB is a bridge,BC is a loop, andBD is an attached
section.
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56 625FRICTION IN STRONGLY CONFINED POLYMER . . .
Obviously the number of contactsn and the lengthg of
an attached blob are fluctuating. Any particular blob wou
disappear~detach from the surface! during a characteristic
time t(g). For g51 this is the relaxation time of one seg
ment t(1);t1 . Since the adsorption-desorption process
determined by the timet1 , it is natural to assume a scalin
law t(g);t1g

x. When a typical blob of sizeg0 is detaching,
the fraction of time it spends in the state with one cont
(n51) is p;t(1)/t(g0);g0

2x . On the other hand, this
quantity can be found from the equilibrium bridge stat
tics: p;n(1)/n(g0);g0

21/2. Therefore,x5 1
2 and

t~g!;t1g
1/2. ~10!

We thus conclude that the adsorption-desorption time o
typical bridge is

T1;t~g0!;t1g0
1/2. ~11!

The bridges and loops dynamics away from the surfa
is governed by the Rouse timeT0;t0g0

2. The surface effects
become dominant whenT1.T0 or t1 /t0.(h/a)3. Below
we assume that this condition is fulfilled.

IV. LINEAR REGIME

Shear flow is imposed by moving one of the surfaces w
respect to the other one with a constant velocityu. A slow
enough flow does not affect the adsorption-desorption
namics of the bridges. During the time interval;T1 the
bridge attains maximum elongation force in the tangen
direction

Ft;~kBT/g0a
2!~uT1!;uz1~a/h!. ~12!

After that it detaches by random diffusion and transforms
a loop.

The shear stress~the friction force per unit area! has two
contributions: One arises from the bridges and the ot
from the loops~or attached sections!. The contribution from
the bridges can be estimated by the product of the bri
elongation force~the tangential component of this force! and
the surface concentration of the bridges

s1;n~g0!Ft;a3uz1 /h
2v. ~13!

The stress linearly depends on the imposed velocity, a
should be in the linear regime. It increases with increas
surface friction,z1 and decreases with increasing distan
h between the surfaces.

The second contribution from the loops has been ca
lated in@23#, it is equal to the product of the surface conce
tration of the attached sections, which is equal to the conc
tration of bridges;n0 and the elongation force per attach
sectionFtt;uz0g0 ,

s0;n0Ftt;huz0 /v. ~14!

The bridge contribution to the stress is dominant whens1
.s0 or z1 /z0.(h/a)3. This condition coincides with the
condition that the adsorption-desorption timeT1 exceeds the
Rouse timeT0 . The linear regime~regime 1! is limited by
s
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the condition that a bridge does not attain maximum elon
tion;ag0 during the timeT1 : uT1,ag0 or u,u1 , where

u15ag0 /T1;h/t1 . ~15!

V. NONLINEAR REGIME

When the imposed velocityu.u1 the behavior become
more complicated. The maximum blob, containingg0 seg-
ments, cannot be attached to the surface during the br
elongation time@23,24#

t*;ag0 /u. ~16!

The characteristic blob ofg segments, which is attached t
the adsorbed surface layer during the elongation time, is
termined by the conditiont1g

1/2;t* :

g;~ t* /t1!
2;~h2/aut1!

2. ~17!

The bridge concentrationn can be found using Eq.~9!:

n;n~g!;~a/v !
a

ut1
. ~18!

If the imposed velocityu.u2 , where

u2;~h/a!2~a/t1!, ~19!

then Eq. ~17! formally implies thatg,1. Physically, this
means that a segment once attached to a surface wou
readily detached during a time shorter thant1 . Let us find
the bridge concentration in the regimeu.u2 . While the
bridges are being created from~large! loops the rate of for-
mation of contacts is not essentially affected by the flow
the flow does not perturb the loop statistics in the direct
normal to the surfaces.„The flow does affect the loops sig
nificantly if u.u4;(a/t0)(a/h)

2 @see Eq.~28!#; we assume
here thatu4@u2 , i.e., that t1 /t0@(h/a)4.… On the other
hand, the rate of bridge detachment is proportional to 1/t* . A
detailed balance between the formation and detachmen
the bridges thus imply thatn}t*}1/u in the regionu.u2 .
Taking into account that foru;u2 the concentration of
bridges is estimated asn;n(1);(a/v)(a/h)2, we see that
n;(a/v)(a/ut1) in both regimesu,u2 and u.u2 . Note
that the number of segments in contact with a surface per
attached blob (g) is

n;g1/2;
h2

aut1
, u,u2 ~20!

n;1, u.u2 . ~21!

After a bridge attains the maximum elongation, the segme
of the corresponding attached blobs must start to move r
tive to the surfaces with the tangential velocityut , which is
of orderu, thus producing a high friction. At the onset of th
process, when only one segment is involved in the moti
the friction force is determined by Eq.~5!,

Fb;~kBT/a!ln~ut1 /a!. ~22!
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626 56A. SUBBOTIN, A. SEMENOV, AND M. DOI
In order to calculate the flow-induced detachment time
one segmenttb , let us consider the local chain conformatio
~Fig. 2!. The segment next to the attached segment along
chain is typically situated in the second surface layer, so
the anglea between the tension force and the surface is
order unitya;1. This tensile force drives the attached se
ment away from the surface with the normal velocityun ,
which is of orderu. Thus the detachment time of one se
ment is of order

tb;a/u. ~23!

Since the attached segments detach independently, the
time during which the high friction forceFb @Eq. ~22!# is
acting isntb , wheren is the number of the attached se
ments.

Let Ft(t) be the tangential component of the bridge elo
gation force. The average shear stress in the system ca
written as

s1;n~g!E
0

t*
Ft~ t !dt/t*;n~g!~kBT/a1ntbFb /t* !.

~24!

The first term in this equation is the contribution of th
bridges on the elongation stage and the second term is
nected with the detaching bridges. Thus we can identify
following two nonlinear regimes.

In regime 2,u1,u,u2 , the shear stress is defined b
Eqs.~18!, ~20!, and~22!–~24!,

s1;
kBT

v F a

ut1
1S a

ut1
D 2lnS ut1

a D G . ~25!

Note that the first term in this equation, which is connec
with the elongating bridges, is always dominant. The str
decreases with increasing imposed velocity; therefore, in
crossover range between the linear and nonlinear regime
stress passes through a maximum.

Regime 3 corresponds to higher velocitiesu.u2 . Using
Eq. ~21! instead of Eq.~20!, we get

s1;
kBT

v
a

ut1
F11S ahD

2

lnS ut1
a D G . ~26!

The first term is still dominant in this regime.
The second contribution to the stress is connected w

the flow inside the layer. In the linear regime this stress
defined by Eq.~14!. The total stress is therefore the sum
contributions Eqs.~14! and ~26!.

FIG. 2. Local geometry of the forces, acting on the break
bridge.
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This stress passes through a minimum at the velocity

u;u3;
a3/2

~t0t1h!1/2
. ~27!

Thus, for the velocitiesu,u3 the stress is determined by Eq
~26! ~regime 3! and foru.u3 the stress is given by Eq.~14!
~regime 4!.

When the imposed velocity becomes very high so that
bridge elongation time is smaller than the Rouse timet*
,T0 , the flow results in a nonlinear loops behavior and
new regime emerges. This regime~regime 5! has been con-
sidered in our previous papers@23#. The critical velocityu4
separating this regime from the regime 4 is

u4;~a/t0!~a/h!2. ~28!

If u.u4 , then the flow suppresses the chain fluctuations
the normal direction, so that the characteristic normal size
this fluctuation becomes of ordera(ut0 /h)

21/3 @23# and the
bridges cannot be formed at all. The shear stress in this c
is given by

s;~kBT/v !~ut0 /h!1/3.

The power 1/3 in the equation is connected with the fin
chain extensibility and incompressibility of the polyme
melts and thus is universal if the film thickness is consta
The computer simulations for short-chain molecules pred
another power laws;u1/2 @19–21#, which may be con-
nected with some compressibility of the systems.

The plot of the macroscopic friction force versus the im
posed velocity is shown in Fig. 3. The stress passes thro
a maximum at the velocityu;h/t1 and then decreases ove
a wide range of imposed velocity. The behavior correspon
to the regimes where the stress is mainly due to the polym
bridges. At high velocitiesu.a3/2/(ht0t1)

1/2 the contribu-
tion of the loops to the stress become dominant and the st
starts to increase again after passing through a minim
value.

VI. TRANSIENT REGIMES

In this section we consider the stress behavior after a s
ing is applied and then stopped~Fig. 4!. If the velocity u
.u1 is imposed to a confined melt in equilibrium, then th
bridges attain maximum elongation at the timet*;ag0 /u.
At that moment the shear stress attains the maximum va

FIG. 3. Plot of the friction force vs the imposed velocity.
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56 627FRICTION IN STRONGLY CONFINED POLYMER . . .
smax;~kBT/v !~a/h!. ~29!

This value does not depend on the imposed velocity and
be attributed to the static friction@1,11,13#. If s,smax, then
the stationary sliding velocity is very lowu;h/t1 ; if s
.smax the velocity increases up to a much higher valueu8
;a3/h2t0 .

We can identify the four stages in the stress relaxat
dynamics after stopping the flow. The first stage correspo
to t,tb . In this stage the initially stretched bridges brea
and the stress decreases slightly. In the second stage, w
corresponds to the time scaletb,t,T1 , the elongated
bridges relax. However, the chains continue to be loca
stretched in the tangential direction. Their conformation c
be described as a random sequence of stretchedg0 blobs.
The Rouse relaxation time of the chain conformationT* can
be estimated as

T*;T1~N/g0!
2;t1N

2~a/h!3, ~30!

whereT1 is the characteristic blob relaxation time@see Eq.
~11!# andN/g0 is the number of blobs in the chain.

Thus the third stage corresponds to the time intervalT1
,t,T* . The last stage impliest.T* .

VII. ANALYSIS OF THE SLIDING STABILITY

According to the classical theory of friction, if the friction
force decreases with the increase of the imposed velo
such as in regimes 2 and 3 in our case, an instability
sliding can appear@29–31#. We now analyze this for a typi-
cal system used in the friction experiments shown in Fig.

FIG. 4. Plot of the friction force after the sliding has been a
plied and stopped.

FIG. 5. Schematic geometry of shearing surfaces.
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When the sliding velocityu0(t) is applied to one of the
surfaces through the mechanical couplingk, this surface
slides over the other fixed surface with the velocityu(t),
which in general does not coincide withu0(t). We can de-
scribe the coupling in terms of an elastic spring with t
elastic constantk. If the spring is elongated byDx, the elas-
tic stress is changed byDs5kDx ~here and in the following
we will attribute this stress to the unit area!. Omitting the
inertial effects, we can connect the time derivative of t
stressds(t)/dt in the system with the velocity differenc
u0(t)2u(t):

ds~ t !

dt
5k„u0~ t !2u~ t !…. ~31!

At the same time, the stresss is equal to the friction force
and is a function of the velocityu(t), s5f„u(t)…. Using
Eq. ~31!, we expressu(t) throughu0 andds/dt and get the
equation for the stress:

s5fS u02 1

k

ds

dt D . ~32!

If the imposed velocityu0 is constant, the stationary stres
s05f(u0) is a solution of Eq.~32!.

The stability of the solution under the fluctuationss8
5s2s0 can be investigated after an expansion of the fu
tion f in the vicinity of u0 . The corresponding equation fo
s8 in the linear approximation is given by

s852l~ds8/dt!, ~33!

where

l5~1/k!~df/du0!. ~34!

Obviously, if l,0, which implies that the friction force de
creases with increasing velocity, the system is unstable.

Note, however, that Eq.~32! assumes that the relaxation
processes in the system occur very fast, i.e., the characte
relaxation time of the system is much smaller thanl. In
order to take the relaxational processes into account
should present the stress not as a nonlinear function of
velocity, but as a nonlinear functionals5F@ t,u(t)#. Obvi-
ously, for u5u05const,F@ t,u0#5f(u0) and the stresss
5f(u0). The stability of the system can be investigated
the usual way after an expansion of the function
F@ t,u(t)# in the series at the vicinity of the pointu5u0 ,

F@ t,u01u8~ t !#5f~u0!1E
2`

t

B~ t2t8uu0!u8~ t8!dt81••• ,

~35!

whereB(t2t8uu0) is the memory function, depending on th
nature of the lubricant and the imposed velocity@here
u8(t)52(1/k)(ds8/dt)#. The linear equation for the stres
s8 is given by

s852
1

k E
2`

t

B~ t2t8uu0!
ds8~ t8!

dt8
dt8. ~36!

-
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628 56A. SUBBOTIN, A. SEMENOV, AND M. DOI
If t→0, thenB(t2t8uu0)→(df/du0)d(t2t8) and we re-
turn to Eq.~33!. In the general case Eq.~36! can be simpli-
fied if we assume a solution of the forms8;exp(at),

aB* ~a!52k, ~37!

whereB* (a)5*0
`B(tuu0)e2atdt is the Laplace transform o

the functionB(t). If Eq. ~37! has a positive solution (a
.0), instability takes place. Thus the problem is reduced
the calculation of the memory functionB(t). We will derive
the corresponding equations for our model.

We have identified two regimes where the friction for
decreases with increasing velocity. In the first approxim
tion, the stress in these regimes is determined by the e
gating bridges and is given by@see Eqs.~24!–~26!#

s~ t !;n~ t !~kBT/a!, ~38!

wheren(t) is the surface concentration of the bridges at
time t. If the velocityu(t) varies slowly with time, the sur-
face bridge concentration is@see Eq.~18!#

n„u~ t !…;~a/v !
a

u~ t !t1
. ~39!

However, for an arbitrary velocity, the bridge concentrati
depends on the flow history and cannot be written in a sim
form. The situation is simplified if the velocity perturbatio
u8(t)5u(t)2u0 is small, uu8(t)u!u0 . In the first approxi-
mation, the equation for the surface bridge concentratio
written as the relaxational one@24#

t0*
dn~ t !

dt
5n„u~ t !…2n~ t !, ~40!

where the bridge relaxation timet0* is the same order o
magnitude as the bridge elongation time

t0*;h2/au0 . ~41!

Taking the mechanical coupling into account, the equat
for the stress is

t0*
ds~ t !

dt
5sS u02 1

k

ds

dt D2s~ t !. ~42!

After linearization, we obtain the following equation for th
perturbations85s(t)2s(u0):

S t0*2
1

k

ds~u0!

du0
D ds8

dt
52s8. ~43!

Instability appears when the term in large parenthese
negative or when the imposed velocity satisfies the condi

u0,u*5~k* /k!~h/t1! where k*5~kBT/vh!~a/h!2.
~44!

Thus, ifu*,u1 or k.k* , the sliding is stable in the whole
range of the imposed velocity; ifu1,u*,u3 , instability
appears for the velocitiesu1,u0,u* ; if u3,u* , the range
of instability isu1,u0,u3 . The diagram of the sliding be
havior in the coordinate (k,u0) is shown in Fig. 6.
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VIII. STICK-SLIP MOTION

Let us consider sliding in an unstable regime and st
with the simplest situation, when the spring elastic consta
k is small. As before, we assume that the inertial effects a
small. The motion can be understood from Fig. 7. After th
stress has been released during the previous cycle of mo
and attained the minimum value

smin;~kBT/v !~t0h/t1a!1/2, ~45!

the sliding velocity is close to zero and the bridges start
restore and elongate~pointA, Fig. 7!. The motion following
the state at pointA can be analyzed as follows. Letx(t) be
the mean end-to-end distance of a bridge. The force act
on the top surface by the bridges isn(t)(kBT/h

2)x(t). This
has to balance with the mechanical coupling forcek„u0t
2x(t)… ~the origin of the time is taken at the stateA!. There-
fore,

n~ t !~kBT/h
2!x~ t !5k„u0t2x~ t !…, ~46!

where n(t) is the surface bridge concentration at the tim
t. This concentration can be found from Eq.~9!, taking into
account that characteristic blob ofg(t);(t/t1)

2 segments is
attached to the surface during the timet,

n~ t !;~a/v !~a/h!2~ t/t1!. ~47!

After t;T1 the surface bridge concentration attains th
maximum valuen0 and the distancex(T1) is

x~T1!;hu0t1 /a~11k* /k!. ~48!

FIG. 6. Diagram of the sliding behavior.

FIG. 7. Transitions in the system during the stick-slip cycle.
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x(T1) is smaller than the maximum bridge lengthh2/a if the
imposed velocityu0,u*1u1 . Since the range of instability
is u0,u* @Eq. ~44!#, the conditionx(T1),h2/a is always
fulfilled.

After the bridges are restored the stress dynamics ca
approximately described by the equation

s~ t !5a3u~ t !z1 /h
2v5smin1ku0t. ~49!

This equation implies that the stress that is accommoda
in the spring equals the friction force in the linear regim
Obviously the stress can increase up to the yield point (B),
where it attains the maximum value

smax;~kBT/v !~a/h!. ~50!

The duration of this process is

T8;~smax2smin!/ku0;~h2/au0!~k* /k!. ~51!

After the transition through the yield point the velocity ca
not continuously increase anymore because the friction fo
decreases in this case. The only possibility for the system
to transform to the pointC with breakage the bridges. Th
velocity sharply increases at the moment and the effec
layer viscosity sharply decreases. Therefore, the stress i
leased very quickly and decays to the minimum valuesmin
~point D! in the time of the order of Rouse timeT0
;t0(h/a)

4. At the pointD, the velocity again cannot de
crease continuously because in this case the friction fo
increases and the spring elastic force decreases. Thu
velocity decreases sharply and system transforms to the
tial point A and the cycle is repeated.

According to this picture, stick slip occurs as a period
transition between two states, which can be associated
solidlike and liquidlike states. In the solidlike state the s
face bridges concentration coincides with the equilibriu
one and the stress increases linearly with the imposed ve
ity. After the yield point is attained, the bridges are brok
and the system transforms to the liquidlike state. In this s
the stress is released. The maximum and the minimum s
values in this cycle do not depend on the imposed veloc

IX. DISCUSSION AND CONCLUSION

In the present paper we have developed nonlinear the
of friction in strongly confined polymer liquids. We assum
that the polymer segments in the adsorbed surface layer
a very small mobility and showed that rheology of the co
fined polymer melts is dominated by the bridges between
surfaces~except for very high imposed velocity!. The relax-
ation time~the lifetime! of a segment in the adsorbed surfa
layer t1 is much longer than the relaxation time of the se
ment out of the layert0 , t1@t0 . It was found that
adsorption-desorption timeT1 of the bridge in the equilib-
rium is proportional to the number of contacts between
bridge and the surface, i.e.,T1;t1g0

1/2, whereg05(h/a)2 is
the number of segments in the bridge. This result has b
derived from the equilibrium bridge statistics. Other char
teristic times of the system are connected with the loops
the chains themselves. The loop relaxation can be descr
by the Róuse dynamics; therefore, the relaxation time of t
be

g
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loop isT0;t0(h/a)
4. The relaxation of the chain conforma

tion is determined by the surface friction and the relaxat
time is of orderT*;t1N

2g0
21/2. It depends on the molecula

mass of the polymer chains.
In order to describe nonlinear bridge dynamics we e

ployed the idea of activation friction@26#. For a constant
imposed velocityu four main regimes in the shear stre
have been identified:

s}ut1 /h
2, u,h/t1

s}1/ut1 , h/t1,u,a3/2/~ht0t1!
1/2

~52!

s}uht0 , a3/2/~ht0t1!
1/2,u,a3/h2t0

s}~ut0 /h!1/3, u.a3/h2t0 .

For very small imposed velocities the bridges break th
mally and the linear regime is realized. With increasing v
locity, the shear stress passes through a maximum and s
to decrease. This behavior arises from the decrease o
surface bridge concentration. In the nonlinear regime the
faces become effectively repulsive for the bridges and t
result in the decrease of the surface bridge concentration
the stress. Increasing the velocity further the friction due
the flow inside the layer becomes dominant. First the beh
ior is linear, and after some critical velocity, the nonline
flow regime is realized where no bridges are formed. In t
regime we predict a 1/3 power law for the stress on
imposed velocity.

We also analyzed the stability of sliding in the regim
where the friction force decreases with the velocity. Assu
ing that the driving force is applied through the mechani
coupling ~the spring in our case!, we demonstrated that th
existence of temporary bridges results in an instability
sliding. Three types of system behavior can be identifi
The first type implies that the spring elastic constant ob
the condition

k,k* ~t0 /t1!
1/2~h/a!3/2. ~53!

In this regime stick-slip motion exists for the velocity inte
val u1,u0,u3 . It can be described in terms of a transitio
between solidlike and liquidlike states. In the solidlike sta
the surface bridges concentration coincides with the equ
rium one. In this state the stress increases linearly up to
yield point, where it attains the maximum valuesmax
;(kBT/v)(a/h) ~the static friction force!. At this point the
bridges are broken and the system transforms to the liq
like state with low viscosity, where the stress is released
decays to the minimum valuesmin;(kBT/v)(t0h/t1a)

1/2 ~the
kinetic friction force!. At this point the sliding velocity de-
creases sharply and the system returns to the solidlike s
again. The static and kinetic friction force do not depend
the imposed velocity. If the velocityu0 is smaller thanu1 or
higher thanu3 the sliding is stable.

The second situation appears when the elastic cons
satisfies

k* ~t0 /t1!
1/2~h/a!3/2,k,k* ~a/h!. ~54!
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The stick-slip motion appears for the imposed velocityu1
,u0,u* . For the velocityu0.u* the stress first decrease
and whenu0.u3 it starts to increase. The last situation co
responds to

k*,k, ~55!

where the sliding is always stable.
Our results qualitatively agree with recent experiments

stick-slip motion in confined polymer liquids@1,11,12#. We
o-

m

n

id

c

ro

s

m

n

found that stick-slip motion can be described in terms of
transition between solidlike and liquidlike states and thus
model is close to the phase transition model@1,11,12,32,33#.
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