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Friction in strongly confined polymer melts: Effect of polymer bridges
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We propose a molecular theory of friction in confined polymer melts between atomically smooth surfaces,
taking polymer bridges between the surfaces into account. Using the activation friction model, we consider the
bridge adsorption-desorption dynamics and calculate the macroscopic friction(floeceangential stregsn
the system as a function of the imposed velocity. We show that the bridges result in the regime where the
friction force decreases with the increase of the imposed velocity. The friction force passes through maximum
and minimum values in the crossover range between linear and nonlinear regimes. We also investigate the
stability of sliding in the regime with decreasing friction for¢81063-651X%97)09606-2

PACS numbd(s): 36.20—r

I. INTRODUCTION Recently we have proposed a simple model, which is
based on the continuum medium approximation. In this
Rheology of polymer liquids strongly confined in a nan- model the polymer-surface interaction is accounted for by
ogap region between two walls is substantially different fromtwo friction coefficients[23,24: One friction coefficient/,
that of bulk polymer liquids in many respedts—14]. The  characterizes the mobility of segments in the adsorbed sur-
direct measurements of the rheological functions under ogace layer of thickness of the order of the segment aized
cillatory shear demonstrated that the confined liquids exhibithe second friction coefficierdl, is outside this layer. One of
a solidlike behavior for a small amplitude of deformation andthe basic points of this model is the estimation of the desorp-
liquidlike behavior for a large amplitud&—7]. In the liquid-  tion time of the chain section of segmentsr(g). Taking
like regime, the friction force behavior is rather Compncatedinto account that the chain conformation in the melt state is
and depends on the thickness of the polymer film: Sheagaussian25], and therefore that the chain section has of
thinning has been found in the experimefi#s4—7,13,14 orderg'? adsorbed segments, the total friction coefficient of
Sometimes the sliding is evinced in the form of stick-slipthe section can be written as-{o(g—g"%)+¢:9"% The
motion[1,11-13. desorption time is thus the displacement time on a distance
The measurements of the linear viscoelasticity under osof order ag'’% 7(g)~a”gZ. Assuming that the polymer
cillatory sheaf5,10] indicated that the loss modulus of con- chains bridge the surfaces, the model qualitatively explains
fined polymers has a shape characteristic of entangled polpome features of the confined polymer melts. In particular
mers[15] even though the loss modulus of the same p0|ymeﬁhe transition from the solidlike state to the liquidlike state
in the bulk state does not show any indication of entanglecan be attributed to the onset of the bridge breakage process
ments. The possible interpretation of this phenomena is tha&nd the existence of two relaxational zones is connected with
entanglement interactions are enhanced in the confined stafege contributions of the bridges and loops.
[5,10]. However, recent computer simulatiofs5] demon- In the present paper we propose a theory of friction in
strate that the entanglements cannot be induced or enhancgiiongly confined polymer liquids that is based on a detailed
by the restricted geometry. Alternatively, the computer simuconsideration of the adsorption-desorption dynamics. We
lations[17—21] suggest that the polymer-surface interactionsthus reconsider the estimation for the chain adsorption-
can be the dominant factor in the rheology of confined sysdesorption time adopted in the previous wag]. We also
tems. These interactions include the short-range forces b&mploy the activation model of frictiof26], which seems to
tween the surfaces and the polymer segments, and londe more appropriate for the description of nonlinear regimes.
range dispersion forcd22]. These forces can be responsible
for the suppression of the mobility of the polymer segments
at the surfaces and even result in the formation of an immo-
bilized glassy layer at the surfaces. Straightforward incorpo- We consider the polymer melt confined between two par-
ration of the polymer-surface interactions into the model is allel walls that strongly adsorb polymers. We assume that the
very complicated problem. polymer chains consist & links (segmentsof lengtha and
volumewv. The chain contour length R,,~aN. The thick-
ness of the confined polymer filmis assumed to be smaller
* Author to whom correspondence should be addressed. than or of the same order as the size of the chain coils
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h<aN'2 The interaction between the polymer and the wall
is characterized by some energy of attractioa (the energy

of a polymer segment when it is adsorbed on the sujface
However, this energy does not affect the equilibrium prop-
erties of the polymer melt since the interactions are screened
in the melt and the correlation length is of the order of the
segment size [25].

The attraction between the polymer and wall affects the
dynamics: If the polymer is strongly adsorbed on the surfaceFiII
the desorption hardly takes place. This effect is not repre
sented by the energy but by the activation energy. In order
to specify the dynamics, we employ the activation model
[26]. We assume that each polymer segment exchanges its
position with one of its neighbors by some activation pro- f~—"In
cess. The activation enerdy, of a polymer segment ad-
sorbed on the surface is higher than the activation energy
U, of a polymer segment in the bulk. Thus the mean timelhus, in the nonlinear case we obtain a logarithmic depen-
that the polymer segment stays at its own position is writterfience of the friction force over the velocity.
as[26]
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FIG. 1. Typical chain conformation with adsorbed segments.
ed circles imply adsorbed segments and empty circles imply free
segmentsAB is a bridge,BC is a loop, andBD is an attached
section.

®

U U I1l. EQUILIBRIUM PROPERTIES AND DYNAMICS
=7 eXl{ ﬁ) . To=1* eX'{ ﬁ) ' (1) OF BRIDGES WITH NO FLOW
. . The typical conformation of a chain confined between two

where 7* is the characteristic time of molecular oscillations Walls consists obridges which start at one surface and end
at another surface, amattached sectionswhich have con-

™ ~a(m/kgT)*? (20 tacts with only one of the surface&ig. 1). An attached
, section includes series ¢tdopsand separates two seccesive
andm is the mass of a segment. bridges. We classify the attached sections according to the

According to the above activation model, the diffusion ,mper of loops. We consider one of the bridge efsds/
constant of the st_ort;ed segma?mjl is much smaller than g Fig. 1) and follow the chain configuration until we come
thf’it pf the bulk liquida®/ 7. Alternatively, one can_v!sua_llze to the next contact@) with one of the surfaces. Most prob-
this in such a way that the polymer segment sitting in theyp|y this is again a contact with the same surface, so that the
adsorbed layer is surrounded by a very wscouszmedlu.m anflagmentB C forms a loop with high probability + w. Here
has an effective friction coefficient; =kgT7,/a zthat IS w is the small probability that thB8C fragment is bridging
much larger than that in the bulk stafg=kgT7o/a". two surfaces. The length of the bridging fragment must be of

The effective friction model |mplles that if a polymer seg- ordergy=(h/a)?, so thaw can be roughly interpreted as the
ment adsorbed on the wall is subjected to an external force prohability that a Gaussian polymer fragment, consisting of
it moves with the mean velocity=1/{, . This relation, how- ¢ “segments, starts at a surface and does not touch this sur-
ever, is valid only forf <kgT/a. If the force becomes larger, ;.o again. HenCM~961/2 [28]. As correlations are
we have to take into account the activation process underlys, oeneq out in the melt state, the probability that an attached
ing the motion of the segments. This is done as follows. Ifsection consists af loops is
the segment is subject to a for€ethe activation energy it

has to overcome when it moves in the directio(n being a _ N =2 102
unit vecto) is U;—an-f. Thus the relaxation time is given Pn=w(1—w)"~go "exp(—n/gy"). (6)
by [27] The average number of contacts per attached section is
. U,—af-n =Snp,~g5°.
m(n)=7"ex kB—T ; () Then loops in the attached section between the succesive

bridging fragments can be also consideredastached blob

where we assume thaf<U,. The average segment veloc- With g links. Gaussian statistics implies that
ity u thus can be found from

/an | a F{aﬁ n

v nn/ nex ksT
where( ) denotes averaging over the directiamsHere we
can separate two casé€n.f<(kgT)/a oru<a/r,, using the vo=hlvgg=a?/vh; (8)
perturbation scheme, we obtain the linear relation between
the force and the average velocity f~Z,u, where ¢;  therefore the surface concentration of attached sections, con-
=(kgT) /a2 This agrees with the effective friction model. sisting ofg segments, is
(il) For kgT/a<f<U,/a or a/my<u<al7r*, with Eq. (4),
we find v(g)~ vonpy~(a/v)(a/h)*g"%exd — (g/go) ). (9)

n=g%2 (7)

>' (4 The surface concentration of the bridges and attached sec-
tions is[23]
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Obviously the number of contactsand the lengtlg of  the condition that a bridge does not attain maximum elonga-
an attached blob are fluctuating. Any particular blob wouldtion ~agg during the timeT,: uT;<agg oru<u,, where
disappearn(detach from the surfageduring a characteristic

time 7(g). Forg=1 this is the relaxation time of one seg- Up=agy/T;~h/r;. (15
ment (1)~ 7. Since the adsorption-desorption process is
determined by the time,, it is natural to assume a scaling V. NONLINEAR REGIME

law 7(g) ~ 7,9*. When a typical blob of sizg, is detaching,

the fraction of time it spends in the state with one contact When the imposed velocity>u, the behavior becomes

(n=1) is p~7(1)/7(gy)~gy *. On the other hand, this more complicated. The maximum blob, containigg seg-

quantity can be found from the equilibrium bridge statis-ments, cannot be attached to the surface during the bridge
1

tics: p~v(1)/v(go)~dg 2. Thereforex=3 and elongation time[23,24
7(g)~m9" (10) t* ~agy/u. (16)

We thus conclude that the adsorption-desorption time of &he characteristic blob afj segments, which is attached to
typical bridge is the adsorbed surface layer during the elongation time, is de-
termined by the conditiomr;g2~t*:
T1~7(go)~ 7190 (1D
g~ (t*/7,)2~ (h¥aur)2 17)
The bridges and loops dynamics away from the surfaces
is governed by the Rouse tirfg~ 7og3. The surface effects The bridge concentration can be found using E¢9):
become dominant whefi;>T, or 7,/7,>(h/a)%. Below
we assume that this condition is fulfilled. v~v(g)~(alv) %. (18
1

IV. LINEAR REGIME . .
If the imposed velocityu>u,, where
Shear flow is imposed by moving one of the surfaces with

respect to the other one with a constant velocityA slow u,~(h/a)%(alry), (19
enough flow does not affect the adsorption-desorption dy-
namics of the bridges. During the time intervalT,; the  then Eq.(17) formally implies thatg<1. Physically, this
bridge attains maximum elongation force in the tangentiaimeans that a segment once attached to a surface would be
direction readily detached during a time shorter than Let us find
the bridge concentration in the regime>u,. While the
Fi~(ksT/goa®) (uTy)~uZ (a/h). (120 pridges are being created froflarge loops the rate of for-
) o mation of contacts is not essentially affected by the flow if
After that it detaches by random diffusion and transforms tane flow does not perturb the loop statistics in the direction

a loop. o . normal to the surfacegThe flow does affect the loops sig-
The shear stredshe friction force per unit argehas two nificantly if u>u,~ (a/7,)(a/h)? [see Eq(28)]; we assume
contributions:  One arises from the bridges and the othefq e thatu,>u,, i.e., thatr, /7> (h/a)%.) On the other

from the loops(or attach_ed sectiopsThe contribution from_ hand, the rate of bridge detachment is proportional tb. 14

the bridges can be estimated by the product of the bridg@etajled balance between the formation and detachment of

elongation forcdthe tan_gentlal component of this fojcand the bridges thus imply thatect* o< 1/u in the regionu>u,.

the surface concentration of the bridges Taking into account that fou~u, the concentration of
bridges is estimated as~ v(1)~(a/v)(a’h)?, we see that
v~(alv)(a/ury) in both regimesu<u, andu>u,. Note

as Hwat the number of segments in contact with a surface per one

g@\ttached blobd) is

o1~ v(go)Fi~adui,/h?v. (13

The stress linearly depends on the imposed velocity,
should be in the linear regime. It increases with increasin

surface friction,{; and decreases with increasing distance h2
h between the surfaces. n~gl2~ . u<u, (20)
The second contribution from the loops has been calcu- aur

lated in[23], it is equal to the product of the surface concen-

tration of the attached sections, which is equal to the concen- n~1, u>u,. (21

tration of bridges~ vy and the elongation force per attached

sectionF~u{yJo, After a bridge attains the maximum elongation, the segments

of the corresponding attached blobs must start to move rela-

oo~ voFuw~huly/v. (14)  tive to the surfaces with the tangential velodity, which is

of orderu, thus producing a high friction. At the onset of this
The bridge contribution to the stress is dominant wl@n process, when only one segment is involved in the motion,
>aq or {1/{y>(h/a)®. This condition coincides with the the friction force is determined by E¢),
condition that the adsorption-desorption tiffigexceeds the
Rouse timeT,. The linear regimegregime 1 is limited by Fp~(kgT/a)In(ur,/a). (22
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FIG. 2. Local geometry of the forces, acting on the breaking 0 u u, u, Uy u
bridge.

. ) FIG. 3. Plot of the friction force vs the imposed velocity.
In order to calculate the flow-induced detachment time of

(Fig. 2. The segment next to the attached segment along the

chain is typically situated in the second surface layer, so that ad?
the anglea between the tension force and the surface is of u~us~ (Tr—h)m (27
0’1

order unitya~ 1. This tensile force drives the attached seg-
ment away from the surface with the normal velodity,
which is of orderu. Thus the detachment time of one seg-
ment is of order

Thus, for the velocitiesi<<ugj the stress is determined by Eq.
(26) (regime 3 and foru>u, the stress is given by El4)
(regime 4.

When the imposed velocity becomes very high so that the
bridge elongation time is smaller than the Rouse tirhe
Since the attached segments detach independently, the totaiTo. the flow results in a nonlinear loops behavior and a
time during which the high friction forc&, [Eq. (22)] is  New regime emerges. This regirfregime 3 has been con-
acting isnr,, wheren is the number of the attached seg- Sidered in our previous papef83]. The critical velocityu,

Tp~alu. (23

ments. separating this regime from the regime 4 is

Let F(t) be the tangential component of the bridge elon- )
gation force. The average shear stress in the system can be u,~(alr)(alh)~. (28
written as

If u>u,, then the flow suppresses the chain fluctuations in

t* the normal direction, so that the characteristic normal size of
‘71””(9)]0 FA(OdUt* ~v(g)(kgT/a+n7,Fy/t*). this fluctuation becomes of ordafur,/h) ~Y3[23] and the
(24) bridges cannot be formed at all. The shear stress in this case
is given by
The first term in this equation is the contribution of the
bridges on the elongation stage and the second term is con- o~ (kgT/v)(ur/h)*2,
nected with the detaching bridges. Thus we can identify the
following two nonlinear regimes. The power 1/3 in the equation is connected with the finite
In regime 2,u;<u<u,, the shear stress is defined by chain extensibility and incompressibility of the polymer
Egs.(18), (20), and(22)—(24), melts and thus is universal if the film thickness is constant.
The computer simulations for short-chain molecules predict
ksT [ a a\? (um another power lawo~u*? [19-21], which may be con-
o~ it oo Nl (29 nected with some compressibility of the systems.
v urq urq a

The plot of the macroscopic friction force versus the im-
Note that the first term in this equation, which is connectedposed velocity is shown in Fig. 3. The stress passes through
with the elongating bridges, is always dominant. The stresa maximum at the velocity~h/r, and then decreases over
decreases with increasing imposed velocity; therefore, in tha wide range of imposed velocity. The behavior corresponds
crossover range between the linear and nonlinear regimes the the regimes where the stress is mainly due to the polymer

stress passes through a maximum. bridges. At high velocitiesi>a®?% (hry7;)Y/? the contribu-
Regime 3 corresponds to higher velocities u,. Using  tion of the loops to the stress become dominant and the stress
Eq. (21) instead of Eq(20), we get starts to increase again after passing through a minimum
value.
keT a a\? [um
o1~—— |1+ =| In|—]]|. (26)
v urg h a VI. TRANSIENT REGIMES

The first term is still dominant in this regime. In this section we consider the stress behavior after a slid-
The second contribution to the stress is connected withng is applied and then stoppdéig. 4). If the velocity u

the flow inside the layer. In the linear regime this stress is>u, is imposed to a confined melt in equilibrium, then the

defined by Eq(14). The total stress is therefore the sum of bridges attain maximum elongation at the titfe~agg/u.

contributions Egs(14) and (26). At that moment the shear stress attains the maximum value
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du When the sliding velocityug(t) is applied to one of the
surfaces through the mechanical couplirg this surface
slides over the other fixed surface with the veloaitft),
which in general does not coincide withy(t). We can de-
scribe the coupling in terms of an elastic spring with the
elastic constank. If the spring is elongated bix, the elas-
tic stress is changed hyo= kAx (here and in the following

0
' we will attribute this stress to the unit aje@mitting the
sl inertial effects, we can connect the time derivative of the
o stressdo(t)/dt in the system with the velocity difference
max Ug(t) —u(t):

do(t)

T:K(Uo(t)—u(t))- (31
ol o t At the same time, the stregsis equal to the friction force

and is a function of the velocity(t), o= ¢(u(t)). Using

Eq. (31), we expressi(t) throughuy anddo/dt and get the
FIG. 4. Plot of the friction force after the sliding has been ap-equation for the stress:
plied and stopped.
1ldo
omax~ (kg T/v)(alh). (29 o=¢| U~ 47 (32

This value does not depend on the imposed velocity and ¢
be attributed to the static frictigri,11,13. If 0<opyay, then
the stationary sliding velocity is very lom~h/7; if o

o : f
> omax the velocity increases up to a much higher valiie = o — oy can be investigated after an expansion of the func-

3/h2

We can identify the four stages in the stress relaxatiorﬂ?ninqbt'hnetnﬁe\gflg'tyrg;m'at-:—gr? ic;or:ssﬁobndmg equation for
dynamics after stopping the flow. The first stage corresponds bp 9 y
to t<m,. In this stage the initially stretched bridges break P _ ,
and the stress decreases slightly. In the second stage, which 7 Mdo'/dy), (33
corresponds to the time scalg,<t<T,, the elongated where
bridges relax. However, the chains continue to be locally
stretched in the tangential direction. Their conformation can _

. N=(1/k)(dd/dup). 34

be described as a random sequence of stretgeblobs. (Lie)(d /o) 34
The Rouse relaxation time of the chain conformatigncan

be estimated as

4 the imposed velocityu, is constant, the stationary stress
o= ¢(Up) is a solution of Eq(32).
The stability of the solution under the fluctuations

Obviously, if A <0, which implies that the friction force de-

creases with increasing velocity, the system is unstable.
Note, however, that Eq32) assumes that the relaxational

processes in the system occur very fast, i.e., the characteristic

relaxation time of the system is much smaller thanin

order to take the relaxational processes into account we

should present the stress not as a nonlinear function of the

velocity, but as a nonlinear functional= ®[t,u(t)]. Obvi-

ously, foru=ug=const,®[t,ug]=¢(uy) and the stress

= ¢(ug). The stability of the system can be investigated in

the usual way after an expansion of the functional
According to the classical theory of friction, if the friction P[t,u(t)] in the series at the vicinity of the poiut=uo,

force decreases with the increase of the imposed velocity t

such as in regimes 2 and 3 in our case, an instability of F v , Y,

sliding can apgea[rzg—Sl]. We now analyze this for atyp)i/- Pltuotu (t)]—¢(u0)+leB(t—t |ugu’ (t)dt! -+,

cal system used in the friction experiments shown in Fig. 5. (35

T* ~T1(N/go)?~ 7.N%(a/h)?, (30)
whereT, is the characteristic blob relaxation tinigee Eq.
(11)] andN/gg is the number of blobs in the chain.

Thus the third stage corresponds to the time intefival
<t<T*. The last stage implies>T*.

VIl. ANALYSIS OF THE SLIDING STABILITY

- Patire.of the bricant and the imposed veodBe
W////////;_/\/\/\/\/\F—io E?(t?iig Iggi}g(dhcjr?;lc‘lsgr]] The linear equation for thtgwstress
Wiz

= 1Jt B(t—t'[ug) % 1 gy 36
0'——; ~ (t—t |UO)T t. ( )

FIG. 5. Schematic geometry of shearing surfaces.
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If 7—0, thenB(t—t'|ug)— (d¢/dup)8(t—1t') and we re- x A
turn to Eq.(33). In the general case E(36) can be simpli- .
fied if we assume a solution of the foraT ~exp(at), ® u!

aB*(a)=—«k, (37

whereB* (a) = [y B(t|ug)e” *'dt is the Laplace transform of
the functionB(t). If Eqg. (37) has a positive solutiondf
>0), instability takes place. Thus the problem is reduced tc
the calculation of the memory functid®(t). We will derive 0 u u, u
the corresponding equations for our model. 1

We have identified two regimes where the friction force
decreases with increasing velocity. In the first approxima-
tion, the stress in these regimes is determined by the elon- VIII. STICK-SLIP MOTION
gating bridges and is given Hgee Eqs(24)—(26)]

instability

FIG. 6. Diagram of the sliding behavior.

Let us consider sliding in an unstable regime and start

a(t)~v(t)(kgT/a), (38 with the simplest situation, when the spring elastic constant

) ) ) x is small. As before, we assume that the inertial effects are

wherev(t) is the surface concentration of the bridges at thesmall. The motion can be understood from Fig. 7. After the
time t. If the velocity u(t) varies slowly with time, the sur-  stress has been released during the previous cycle of motion

face bridge concentration jsee Eq(18)] and attained the minimum value
2 i~ (KgT/v) (7ohi 712) ¥2 (45)
v(u(t))~(alv) ——. (39 min g l/v)(7Toh/ 7y )
u(t)y

, ) ) . the sliding velocity is close to zero and the bridges start to
However, for an arbitrary velocity, the bridge concentration ociore and elongat@oint A, Fig. 7). The motion following

depends on the flow history and cannot be written in a simpley, o state at poiné can be analyzed as follows. Left) be
form. The situation is simplified if the velocity perturbation (o ean end-to-end distance of a bridge. The force acting
u'(t)=u(t) —up is small,[u’(t)[<uo. In the first approxi- o the top surface by the bridgesiit) (ke T/h2)x(t). This
mation, the equation for the surface bridge concentration i§;s to balance with the mechanical coupling forelgt

written as the relaxational orje4] —x(t)) (the origin of the time is taken at the stai¢. There-
fore,
du(t)
£ =v(u(t))— (1), (40)
dt V() (kg T/h2)X(t) = K (Ugt— X(1)), (46)

where the bridge relaxation timg is the same order of

. . ) ) where v(t) is the surface bridge concentration at the time
magnitude as the bridge elongation time

t. This concentration can be found from Ef), taking into
(41) account that characteristic blob gft) ~ (t/7;)?> segments is
attached to the surface during the time

Taking the mechanical coupling into account, the equation

th ~h?/au,.

for the stress is v(t)~(alv)(a/h)?(t/ 7). (47)
, do(t) ldo After t~T, the surface bridge concentration attains the
to gt 9l Yo g/ oW (42 maximum valuer, and the distance(T,) is
After linearization, we obtain the following equation for the X(Ty)~hupr/a(l+ k*/ k). (48
perturbations’ = o (t) — o (uy):
1 do(ug)| do’ ‘o
* _ - — !
(0 x du, | dt 7~ (43
- . . G B C
Instability appears when the term in large parentheses is ‘max >
negative or when the imposed velocity satisfies the condition
Up<u*=(x*/k)(h/7;) where k* =(kgT/vh)(a/h)?.
(44)
G -
Thus, ifu* <u, or k> «*, the sliding is stable in the whole A D
range of the imposed velocity; ifi,;<u* <us, instability >
appears for the velocities; <up<u*; if ug<u*, the range 0 uj u

of instability isu;<up<us. The diagram of the sliding be-
havior in the coordinatex,ug) is shown in Fig. 6. FIG. 7. Transitions in the system during the stick-slip cycle.
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x(T,) is smaller than the maximum bridge lengt®a if the  loop is T~ mo(h/a)*. The relaxation of the chain conforma-
imposed velocityu,<u* +uj; . Since the range of instability tion is determined by the surface friction and the relaxation

is up<u* [Eq. (44)], the conditionx(T,)<h?a is always time is of orderT* ~ 7;N?gy *. It depends on the molecular

fulfilled. mass of the polymer chains.
After the bridges are restored the stress dynamics can be In order to describe nonlinear bridge dynamics we em-
approximately described by the equation ployed the idea of activation frictioh26]. For a constant
imposed velocityu four main regimes in the shear stress
a(t)=a%u(t) {1 /h?v = opin+ KUgt. (49  have been identified:
This equation implies that the stress that is accommodating oxur,/h?, u<h/z

in the spring equals the friction force in the linear regime.

Obviously the stress can increase up to the yield pdt ( oo llur hl ry<u<a¥(hryr,) Y2
1 1 071

where it attains the maximum value (52)
Tma~ (KgT/v)(a/h). (50 oxuhrg, a¥4(hrer)*?<u<a’/h’r,
The duration of this process is ox(ure/)¥3,  u>ad/h?r,.

[ _ ) —(h2 *
T~ (O max™ Tmin)/ tio ™ (h/al) (#7/ ). (51 For very small imposed velocities the bridges break ther-
After the transition through the yield point the velocity can- Mally @nd the linear regime is realized. With increasing ve-
not continuously increase anymore because the friction forclCity, the shear stress passes through a maximum and starts
decreases in this case. The only possibility for the system i decrea_se. This behaw_or arises from_ the dec_rease of the
to transform to the poin€ with breakage the bridges. The surface bridge concentration. In 'Fhe nonlinear regime the sur-
velocity sharply increases at the moment and the effectivEACeS pecome effectively repulsive for_the bridges an_d thus
layer viscosity sharply decreases. Therefore, the stress is r osult in the decrease of the surface bridge concentration and

leased very quickly and decays to the minimum vabyg the stress. Increasing the velocity further the friction due to
(point D) in the time of the order of Rouse tim@&, the flow inside the layer becomes dominant. First the behav-

~ 1o(h/a)*. At the pointD, the velocity again cannot de- ior is linear, and after some critical velocity, the nonlinear

crease continuously because in this case the friction forcgov‘.’ regime 1s rg_al;zedl\//éhere no llarldg:zs arr]e formed. In tms
increases and the spring elastic force decreases. Thus thegd'ime we predict a power law for the stress on the

velocity decreases sharply and system transforms to the in*[nposed velocity. . S .
tial poiyr/nA and the cyclg?/s repez;;ed We also analyzed the stability of sliding in the regime
: where the friction force decreases with the velocity. Assum-

According to this picture, stick slip occurs as a periodic. = ; - ;
transition between two states, which can be associated with'J th.at the d”"“.”g fprce is applied through the mechanical
coupling (the spring in our cagewe demonstrated that the

solidlike and liquidlike states. In the solidlike state the sur-~". : . ; o
face bridges concentration coincides with the equilibrium‘a).('s.tence of temporary bridges results in an instability of
liding. Three types of system behavior can be identified.

one and the stress increases linearly with the imposed velo he first t imolies that th ) lasti tant ob
ity. After the yield point is attained, the bridges are bmkenéheeccl)rr?dit?gor? Implies that the spring elastic constant obeys

and the system transforms to the liquidlike state. In this stat
the stress is released. The maximum and the minimum stress

12 3/2
values in this cycle do not depend on the imposed velocity. k<&*(7o/T1)"4(hla)*~ (53)

In this regime stick-slip motion exists for the velocity inter-
val u;<up<<us. It can be described in terms of a transition
In the present paper we have developed nonlinear theordyetween solidlike and liquidlike states. In the solidlike state
of friction in strongly confined polymer liquids. We assumedthe surface bridges concentration coincides with the equilib-
that the polymer segments in the adsorbed surface layer havikm one. In this state the stress increases linearly up to the
a very small mobility and showed that rheology of the con-yield point, where it attains the maximum valuen.
fined polymer melts is dominated by the bridges between the-(kgT/v)(a/h) (the static friction forcg At this point the
surfaceqexcept for very high imposed velocjtyThe relax-  bridges are broken and the system transforms to the liquid-
ation time(the lifetime of a segment in the adsorbed surfacelike state with low viscosity, where the stress is released and
layer 7, is much longer than the relaxation time of the seg-decays to the minimum value,~(ksT/v)(7oh/78)Y? (the
ment out of the layerry, 7,>75. It was found that kinetic friction force. At this point the sliding velocity de-
adsorption-desorption tim&; of the bridge in the equilib- creases sharply and the system returns to the solidlike state
rium is proportional to the number of contacts between theagain. The static and kinetic friction force do not depend on
bridge and the surface, i.6;~ 7,05'?, wherego=(h/a)?is  the imposed velocity. If the velocity, is smaller tharu; or
the number of segments in the bridge. This result has beeigher thanu; the sliding is stable.
derived from the equilibrium bridge statistics. Other charac- The second situation appears when the elastic constant
teristic times of the system are connected with the loops angatisfies
the chains themselves. The loop relaxation can be described
by the Raise dynamics; therefore, the relaxation time of the k* (1ol 7)Y3(hla)®?< k< k*(alh). (54)

IX. DISCUSSION AND CONCLUSION
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The stick-slip motion appears for the imposed veloaity found that stick-slip motion can be described in terms of the
<ug<u*. For the velocityuy,>u* the stress first decreases transition between solidlike and liquidlike states and thus our
and whenuy> U, it starts to increase. The last situation cor- model is close to the phase transition modgll1,12,32,38
responds to
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